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Abstract

In an earlier paper [{1] we characterized the class of facets of the set
covering polytope defined by inequalities with coefficients equal to 0, 1 or
2. In this paper we connect,fhat characterization to the theory of facet
lifting. In particular, we~introiqﬁ§ a family of lower dimensional polytopes
and associated inequalitiesxthangz only three nonzero coefficients, whose

lifting yields all the valid inequalities in the above class, with the lifting

coefficients given by closed form expressions.
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: . 1. Introduction

‘8

::::.. A great variety of practical optimization problems can be formulated as
Lol
(",“ set covering problems, i.e. integer programs of the form

:".‘l .

i:::ﬁ (SC) min {cx ' Ax 21, x € {0,1}"}

o

::'I' where A is an mxn 0-1 matrix and 1 is the mvector of 1’s. Attempts at
(3

-, understanding the structure of this class of problems lead to the study of the
I..\

b

S set covering polytope

“

o 0,13" | Ax 2 1

e PI(A) := convi{x € {0,1}" | : }
g i and its relation to the relaxed polytope

- P(A) := {x e R" | Ax 21, 0 $ x s 1}.

o

_w In a first paper on the facial structure of Px(A) {11, we described the
._ . facets of PI(A) defined by inequalities of the form ax 2 2, with (Xj € {0,1,2}.
,.-f' More generally, we characterized this class of inequalities as obtainable by a
::_ particularly simple version of Chvatal’s procedure (3] and established a

. connection between facet defining inequalities and full circulant submatrices

~$~;
LR k-1 ..

> o of A with k 2 3.
P "

n.,:'-: In this paper, we connect the results of [1] to the theory of facet
: lifting [2, 4-7]. While in [1l] our analysis centered on the role of certain
10704
B '
1 : subsets of the rows of A, here our focus is on subsets of columns of A. In
A
2%
ﬁ-‘ particular, we start with a triplet of colummns, plus some extra columns needed
2-_—.- to make the resulting problem feasible, and consider a class of wvalid
X -
" inequalities for the set covering polytope in this lower dimensional space
SN
: {Section 2). We then lift the inequality into R" by a specialized procedure
..;,—_ that gives closed form expressions for the values of the coefficients
.:"_ (Section 3). Finally, we give necessary and sufficient conditions for a given
,::_r inequality ax 2 2 to be obtainable by this procedure, and describe a modified
3 Py
.J lifting procedure, using a subset of the rows of A, that yields those

"
‘ ,.': inequalities not obtainable by the first procedure.
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]

::&. 2. Inequalities from Circulants of Order 3
U
0.~
::g.: We first give some preliminary results on inequalities induced by
\‘i submatrices of the form
x:'\.l
. 011
3 2 g
(" C3 = 1011].
Q 110
s
e,
Bt Let N and M denote the column and row index sets, respectively of A. We
K :‘.: note that PI(A) is full dimensional if and only if every row of A has at least
S;; two 1’s. More generally, the dimension of PI(A) is n-k, where k is the
)
J/:j cardinality of a maximal set of rows that have a single 1, no two of which
; ‘h:‘
P have their 1’s in the same column.
®
x:‘_-\- Theorem 2.1. ILet N < N, [N ] =3, N, =N\ N, and
Lo _ . _ .
[0 Mo—{JCM[a”—O,VJENz}.
Pty The inequality
{
. : (2.1) ‘1.“.(}{j : JE N1) 22
k)
' is valid for PI (A) if and only if every column of A:‘l contains a zero.
N o
:‘ 4 valid inequality (2.1) is minimal if and only if A:1 does not have a

i

N . zero row or two unequal rows with a single 1 in each.

k)

%\: A valid inequality (2.1) for }’I (4) cuts off a vertex of P(4) if and only
:'f\ if every row of A: 1 contains at most ope zero.

{;,'. Finally, a va(}jd ineguality (2.1) defines a facet of }"‘I (A) if and only if
\:EE every row of A: 1 contains at most one 0, and AH\ " does not contain a 3xn

;:SE submatrix of tboe form (I3, E) (up to row pemut:tjons) where 13 Is the
':::_E identity matrix with columns indexed by )V1 and K has a single column of 1°’s
{;‘: with all other entries equal to 0.

r’:; Proof: If there exists a column ‘jo of A:1 which ltas no 0, then x*

Rt defined by x! = 1 if j € N, u {ji}, x} = 0 otherwise, satisfies Ax 2 1 and

"'f:‘ violates (2.1), hence (2.1) is not wvalid. If every column of A:‘l has a zero
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then it takes at least two columns to cover Mo’ hence (2.1) is valid.

If A:1 contains a zero row or two unequal rows with a single 1 in each,
o
say a ; = 1, a, ; = 1, then (2.1) is not minimal, since in the first case
171 22
every inequality is trivially valid (PI(A) is empty), and in the second case

adding up rows i1 and iz gives x  + xj 2 2, which strictly dominaties {(2.1).
1 2
Conversely, suppose there is no zero row or two unequal rows with a

single 1 in A:1. Then reducing any of the coefficients of (2.1) invalidates
0 .
the inequaiity. Indeed, if the coefficient of some xj, JE N‘, is replaced by

a < 1, each of the inequalities x + x + ax 2 2 and x + ax + x 2 2 cuts
iy i, ig iy i, i

off the solution x* defined by x: =1 for j € N2 U {jz,js}, x? = 0 otherwise:

and the inequality ax + xj + xj 2 2 cuts off x defined by §j = 1,
1 2 3
J € Nz v {jl,jz}. On the other hand, if the coefficient of some xj . j* € Nz’
%
is replaced by B < 0, the inequality x + %, +x + Bx. 2 2 cuts off both
jl i, ig Iy
x* and x.

Next, let (2.1) be a minimal valid inequality for PI(A). If every row of

A:I contains at most one 0, then x* defined by xf = 1/2, j € Nl, x: = 1,
0
JE N2 is a vertex of P(A) cut off by (2.1). If, on the other hand, A:1 has a
()

row with two 0’s, then the corresponding inequality of Ax 2 1 is of the form

x. 21 for some jle Nl; and since column jl of A:l has at least one 0, there

i
1 0
also exists an inequality of Ax 2 1 of the form xj + xj 2 1, where
2 3
{ji’Jz’ja} = N1. But then (2.1) is the sum of these two inequalities and

cannot cut off any point of P(A).

From this last statement it also follows that if A:1 has a row with more

0
than one 0, then (2.1} cannot be facet defining for P!(A). Also, 1if
A contains a submatrix of the form (13, E) and k is the index of the column

M\M
)

of all 1’s of E, then every cover x* satisfying (2.1) with equality also
satisfies x: = 1; hence (2.1) does not define a facet of PI(A).

Conversely, suppose A:1 has at most one 0 in every row and An\n contains
0 : 0
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B,

‘w

::q no submatrix of the form (Ia‘ E}), with the columns of I3 indexed by Nx' If
0o

, An\n contains any rows with a single 1, and p is the maximum number of such
o o
(" rows whose 1’s occur in distinct columns, then the dimension of PI\'A) is
[ »

::‘::' d = n - p. We will show that (2.1) is facet defining by exhibiting d affinely ]
,.:.

s independent points of PI(A) that satisfy (2.1) with equality.

Lol ,

Ny For k € Nz’ define

I~ .

o T(k)0:={ieM\M0|a“=0,V_j€N\{k}}

p ‘:: ’

AN and

. . .

T{k) .—L1€M\Mo|a”—0, VieN, \ {kj, Z(a, : jeN) =1}

RN Clearly, the mumber of k € N_ such that T(k) # @ is p=n-d. Let
\-:'\

; - e=1(1, ..., 1), e € R", and let ej be the j-th unit vector in R". For every
S

® k € N such that if k ¢ Nz’ T(k)o= @, define the n—-vector

.‘_-;.'_ e - e k € N1

..{- k _

x -

e—ej(k) kEN2 : T(k)o=¢,

1::} where j(k} € N_ is chosen such that, if {j_ ,j.} = N \ j(k), a . +a =1
;._: 1 1 2 1 111 1)2

'i\ for all 1 ¢ ’l’(k)1 (if T(k)l = @, j(k) is chosen arbitrarily). The existence
v

3 of such j(k) follows from the fact that AH\H does not contain a submatrix of
q ." . -

;_; the form (13, E) with 13 indexed by N1'

My

:::; The d vectors xk are 1in PI(A), satisfy (2.1) with equality, and are
-sx affinely independent; hence (2.1) defines a facet of PI(A).”

<,

: Corollary 2.2 If (2.1) is a minimal valid inequality for PI (4) and 1s
(- N

_-_','.:' not the sum of two inequalities of .4H1x 2 1, then A: 1 contains a cﬁ .

L 0 0

." Proof. Let (2.1) be a minimal valid inequality for PI(A). If (2.1) 1is
\-.:‘ not the sum of two inequalities, then every row of A:I has at least two 1’s;
oo o

:, also, every column of A:l has a 0. Therefore, A:1 contains a C;H

0 0

B> .

;" We illustrate Theorem 2.1 on the following

: Example 2.1 Let A be the matrix

). »
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" 01001
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0

K25 Setting N = {1,2,3}) and N, = {4,5), we have M_ = {1,2,3} and every

N . . Ca . .
column of Anl contains a zero. Thus X, + X, + Xy 2 2 is a valid inequality for

)
-

Px(A). It i: also minimal, since every row of A:l does not contain a zero row
or a row with a single 1; and it cuts off the vzrtex x = (1/2, ..., 1/2) of
:'."". P(A). It contains C; in its first three rows and columns. However it is not
:'_:; facet defining, since rows 6, 4, 7 form the matrix (13, E), with 1’s in column
'x:\,-:- 5: hence X = 1 for every x € PI(A) such that X, + X, + Xy = 2. On the other
:, hand, if any 0 in rows 4, 6, 7, is replaced by a 1, then (2.1) is facet
:_E. defining for P[(A).“

;;:

—~
x|

4
q

LIS N R

3. The Family of Sequentially Lifted Inequalities

14"
2

We now discuss the lifting of the inequalities introduced in Theorem 2.1.

[

a
.

LS

Theorem 3.1 lLet N, N, < N, N n N, =@, [N| =3, and let (2.1) be a

(VRERA

'_:,.; minimal valid inequality for PI(AN‘IUNZ) #8.
#
S
oy Let j, ..., J be an arbitrary ordering of N = N\ (N u N}, where
s 1 q 3 1 2
¢ :':: g= I/V3| , and define x5 JE€ N3 , recursively as follows:
L]
o For =1, ..., q, denote
o ¢
L™ e= f . R 1 - .
gt J U= AU ey Jpy)s with J @:
e J('.z{.je st |« =8, t=0,1, 2.
\ "2 ’ 2
‘ .= . - .
o M) {zeMlaij 0, Vje N, u J 7},
":‘,"- and define the conditions
S (cl) a =1 forallice MJ(){);
S 't
.‘_%.., and
o
"_,;
A
'\"‘-
“y




Y XY L T
w2 e
Pt SN

&k

-
o

"y
I

S
e o
b

f . :_'.4‘
':i;: b

P '5';';')':' o

&

-

o)

L

SR
AN HNSAN S

55

<o
{

-
-

A

£

Dl il LA N

c2) there exists k € N; u J;t such that
a + a zlforallieMJ(').
ik 1](' 0
Set
2 if (cl) holds
ajt = 1 if (¢2) holds but (cl) does not
0 otherwise
Then
(3.2) S(x : JEN)+T(a x :&=1, ..., q
i 1 lg ip
is a minimal valid Iipequality for PI(A). Further, if (2.1) cuts off a

fractional vertex of F’(ANIUNZ), then (3.2) cuts off a vertex of P(4).

N _UN

Finally if (2.1} defines a facet of'fz(A 1 2), then (3.2) defines a

facet of'l?(A).

Before proving this theorem, we illustrate it.

Example 3.1. Let A be the matrix
(111000001
011001011
101000110
110000010
000111101
110101100
(011000110,
Let N1 = {1,2,3}, N2 = {4,5}. Then Mo = {1,2,3,4,7}, and X, x4

X 2 2 is 2 minimal valid inequality for Pl(Anlu"

o 1).

2 2 is facet defining.

2), that cuts off the

fractional vertex x = [E, E, :E;’ Further, Pl(Aulunz) is full

3 3

dimensional and thus X, + X, + X, To 1lift this

inequality, consider the ordering of N3 given by (6,7,8,9).
For J'1 = 6, Jt = @ and M(J;) = Mo‘ Since neither (cl) nor (c2) holds, we
set @ = a_ = 0.
j 6
1
For j, = 7, J5 = (6}, J° = 8, and M(3%) = {1,3,4,7). Condition (cl) does

not hold but (c2) holds since a + a

. 2
iz (7 21 for all i € M(Jo). Thus we set

_"-""-.'!Y—“.*"‘.} _4"“--“:,- o WF‘&-K.\\‘) . -** P e
B DA Bt d

g ——r MU0
AT AT O K TP AT T R KT R R LR, AR ‘6."0"‘0‘ "l.‘ !!‘ l""_,".-..h"..‘:"



. uj = d7 =1
‘ 2
N 3 3 3 _ ,
P For j3 = B8, Jo = {6}, J1 = {7} and M(Jo) = {1,3,4,71. Again, icl) does
g__ not hold but (c2) holds since a ta 2 1 for all i € M(Jg), and sc we set
e
= a =a =1
X ’s \

Finally, for j, = 9, J. = (6}, J: = (7,8}, M(J;) = {1,3,4,7}: ‘cl) does

not hold but (c2) holds, since ai2+ g 2 1 for all 1 € M(J;3. Thus we set

1

ﬂ- -l' K

bt

« = a_ =1, and the lifted inequality is

] 4 9

( (3.3) X+ X, + Xy + X, + Xg + Xg 2 2

:ﬁ According to the Theorem, (3.3) is valid and minimal for PI(A). Also,
~
k:E (3.3} cuts off a fractional vertex of P(A), for instance x = ( g, g, g, 0, 1,
A8
A%

r 0, 0, 0, 0 ]; and 1t defines a facet of PI(A).
ﬁ; On the other hand, if we order N3 as {6,7,9,8}, then a = 2 and ay = 0,
b)

o

;ﬁ i.e. the lifted inequality is

o
( X, + %, + Xy + X, + Zx9 z 2,
.
.- which is also minimal and facet defining for PI(A).

:t We will prove Theorem 3.1 by the technique known as sequential lifting
S

\-1 with complementing (see [2, 86])
a‘i We start by complementing the wvariables xj, JE N1U Nz’ i.e. by restating
’ .-

j\ the problem in terms of a new set of variables yj, J € N, defined by

ﬁ

~ . .

o 1 - x if e N uN

o ;

o (3.4) v, = : vood

y ! X if j e N

- J 3
?:: Clearly, x € {0,1}n satisfies Ax 2 1 if and only if y € {0,1}" satisfies
LA

L ( . _ L.

® (3.5) Z(a”yj t JE NIU Nz) E(aijyj 1 J € Na)

-

i SZa  : jeN UN)-1 Vi e M

,._-" i} 1 2

:f and x € {0,1}n satisfies (3.2) if and only if y € {0,1}n satisfies

; . o + N < = -

o3 (3.6) E(yj jEN) Z(Bjyj JEND <1 ( |N1| 2y,

o,

*. = . .

= where Bj —uj, JE N3. Define

4

'

o

° 7

Ly
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:.:“ =X Mo Bt par ot RN mg* haV "ol ke e Ty - Sa a4 TS - z ‘--n-n-n-r‘
.'.’
N

n

@
X \j C N . v n . . - R

o PK{A; := conviy € {0,1} | y satisfies (3.5) }

": We note *.e obvious facts that
W\ -

(1} X € PI(A') if and only if y € PI‘(A) for y defined by (3.1.:

bos o . . . .C
o {11} dim P_{A) = dim P {A}:
-.,\ 1 1
A
_.:} {11i) (3.2} is a (minimal) valid inequality for PI(A) if and only if
-

' {3.6) is a (maximal} valid inequality for PT(A};

.\ {iv) (3.2) defines a facet of Px(A) if and only if (3.6) defines a facet
.::::j of P?( A).
L ] Since properties (i) - {iv) also hold for arbitrary submatrices of A, we can
A

\’_'; prove that (3.2) has the properties claimed in Theorem 3.1 with respect to
.

o
::. PI(A) by showing that (3.6) has those properties with respect to P(I:(A).
SN

e Lemma 3.2 Let
by "-5 Pustutusimashaiih iy

yO)

o (3.7) Ny + JeEN) S1

NN j 1

s . ., . . C,,N_UN . .
-::. be a maximal valid inequality for PI (A"1772) # 8. Let Jyr e dy be

“u

any ordering of )V3 (with g = !Nal). Then

i *

a9

o~

- (3.8) Uy : JeEN)Y+Z(PB y ::&=1, ..., g9 51

~. i 1 ig lg

o

A is a maximal valid inequality for PIC(A) , with the coefficients Bj defined

L

‘ recursively by 8 =1 - z , where

= z =maxI(y : JEN)+IB vy : k=1, ..., &1)

2’ s ig ] 1 I

e

-.::o S. t-

®

Ay (IP){ (a y + JENUN)Y-Z(a . ¥y = k=1, ..., -1}

B 117 ] 1 2 LRI

b
N SZ(a :JENUN)-1+a , YieM

N i} 1 2 i ]t

‘. .

N yje {0,1}, Je M

._’ f a £ p S MO . )

[- 2 urther, i1f (3.7) cuts off a vertex of P (A1 2), then (3.8) cuts off a
-2 c : . . C NN .
-7 vertex of P (A). Finally if (3.7) defines a facet of P[ (41 2), then (3.8)
..

-s.:- defines a facet of PIC(A).

e

A Proof. If (3.8) is not valid, it cuts off some y' € PC(A). Let £ be the
_'_’::: largest integer such that y}: = 1. Then

ree £

F:'.:

® 8

L

o

A T A R A S i e




1 by
WY
l’;
o

f.:

N Ly i G eN) LB vy k=1, ..., 81«8 1
N ] ! T Tk 'L
N
=$ﬁ which implies B » 1 - z , contradicting the definition of B .
N ie g L
( o If (3.8} is valid but not maximal, then at least one of its coefficients
'\; BJ, J € N3, is not maximal, i.e. can be increased without cutting off any

\ L]

" e . . .
l:? point of P:(A). Let £ be the smallest integer such that Bj is not maximal,
ol £
;‘T and let ; be the solution to (IP)C that yielded the wvalue zj . Then
; 2
.‘J - -~
;:i {y, 1, 0, ..., 0) ¢ P?(A), where 1 is the component indexed by jt’ and the 0’s
fNU‘

‘::j are those indexed by J£+1’ .e+y J . Since B is not maximal,
A q ]t
Iy : JEN)+ZB vy, k=1, ..., &-1) + B <1
. 1 1 Iy k g
! :ﬁ or B <1 -2z , again contrary to the definition of 8 .
o 12 12 e
’iﬁ Thus {3.8) is a maximal valid inequality for Pf(A). If (3.7} cuts off a
:f’ vertex y of PT(Auluuz), (3.B) obviously cuts off the vertex of PT(A) obtained
L n
;:Q from y by adding 0 components for all jC’ £=1, ..., q.
p:\_'f."
;'\} Now suppose (3.7) defines a facet of Pf(A"lUNz), and denote by A7 the
o
'(4 i matrix A whose columns are indexed by Nlu NZU {jl’ ey jq}. We use induction
4, ...
:{;- on q. Since for q = 0 we have P?(Ao) = P?(ANIUNZ), assume that (3.8) defines H
no
:i& a facet of P?(Aq) for q =0, 1, ..., k, and let q = k + 1 2 1. Uonote by d
~
P ol
the dimension of Pf(Ak), and assume first that the dimension of P?(Ak’l) is
P .
ji{. d + 1. Then there are d affinely independent points yle Pf(Ak), i=1, ..., d,
E:i each having y := INIU Nzl + k components, that satisfy (3.8} (for q = k) with
< equality. Adding to each yi a (y + 1)-st component equal to 0 and defining
@
:ﬁ% the additional (y + 1)-vector yd*l = (0, ..., 0, 1), we obtain d + 1 affinely
~ﬁb ) . i C, k+1, . B )
Y independent points y € PI\A } that satisfy (3.8) {(for q = k + 1} with
1 <)
-"n:
[ equality.
.t
.'ﬂ-.' . . i
:a} Assume now that the dimension of Pf(Ak+1) is d + r for some integer r,
‘:;: 2sr<£y+1-4d, i.e. that the addition of column jk+1 increases the rank of
AT
) the system by more than one. Then the system defining Pf(Ak) has r - 1
Y
o inequalities of the form v, S 0, te¢ NZ, p =1, ..., r - 1, with all t
-1':'-. P p P
f.:-t
~

" -w—’n-’an- -'- - -*-'r'-n’-’-“'rv-*“‘vl{‘J\f\{'(v .(. '.y. ) ’*w ,:_.... o ) S -i,- . ‘. v , . 'H-
S *' g A ,.’l’-l. ."' o A'.H’""' -" .,. P ‘, # 'A‘ "' .-, UKD "N , Q"'.;" - .. .1" ,.'n......%'of. .'!.’.t...l .9‘& ¢



\ -
7~ distinct, such that the corresponding inequalities of P?(A”lf‘ are y -y
J‘: p Jk+1
.* <0, p =1, ..., ¢ - 1. To the set of d + 1 affinely independent
'
A

{(y - 1l)-vectors yi constructed above we then add r l new (y + l}-vectors of

—y

- the form y**'*® = (0, ..., 0, 1,0, ..., 0, 1), p =1, ..., r - 1, with the
;: first 1 1n position tp and the second in position \jk”. Since the first d + |
A vectors yi all had yi =0 forp=1, ..., r - 1 {otherwise they would not have
:; been in Pf(Ak)), the ;ddition of each yd*“p, p =1, ., r - 1 increases the
23 rank of the resulting system by one; and thus we obtain a system of d + r
a affinely independent points yie Pf(Ak”), each of which satisfies (3.3} /for
) q = k + 1) with equality.

:: This completes the induction and proves that (3.8) defines a facet of
W

PE(A). |

"f_\ From Lemma 3.2 it would seem that calculating the coefficients of a
.’:\ lifted inequality requires the solution of an integer program in |N1u NZI +
oo

£ - 1 variables for each coefficient Bj , a task that is NP-complete. This is

-

2.
::- indeed the case when the problem at hand is an integer program with no special
f\
':.: structure. In the case of the family of inequalities (3.2) for the
o

set covering polytope, however, the structure of the problem allows one to
solve this sequence of integer programs by a closed form expression, as we

shall presently show. But first we need two more auxiliary results.

* .‘.\ b .':‘ ] '):',I"A',L"‘."v LAY

Lempa 3.3. For any ordering of N3, we have 1 S zj £ 3 and 0 2 BJ, 2 -2

A for all j ¢ /VB

. Proof. Since (3.7) is a maximal valid inequality for Pf(AN1UN2), the
s

Y integer program (IP)C always has a feasible solution of the form v = 1 for
.

.

';‘_‘ some k € N1, y, = 0, 1 # k. Thus zj 2 1 and hence Bj £0, j = ‘j1’ N jq.
L7~
b o
'.(::' On the other hand, since Bj £ 0 for all j € Na’ 3 is the unconstrained maximum
,.:

® of z forall £e€e {l, ..., q}; hencez, s 3and B 2-2, j =i, ..., .||
5 7, 1 J i 1 q

M

»

~

‘:‘.
o

I.l

[ ] 10
P
L .
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K N Lemma 3.4. Let (3.7) be a maximal valid inequality for lf(’Anlunz,?, and
oy let jl, cee, jq be an arbitrary ordering of N_’. Suppose Bj has been
("l determined for j = j]. cey j('_j, and let

A (Jyr oons Jp_y/ vt g it =1,
5%

2T

. 2 _ )
. = lieJ lBj- t}, t =0, 1, 2.

.

Then the value of zj in (IP)(, is the same as 1in

"

L

it

| -

S\ z =maxL(y : jeN) -Z(y : je J )
: ‘{f ig J 1 b] 1
Do s. t.

3 (SIP) S(a y :JjeN)-Z(a y : eI

: ‘L ij7j ° 1 ij7i " 1
‘:;- SZ(a,‘.',jE:N)—1+a_,,V1'EM(J£)

o ij ‘é ljt 0o
:} Zl(yj P JE Jl ) s 1

~t
:' yj € 0,1}, je N1U Jf‘.

:::: Proof. Since the objective function coefficient of yj is 0 for
-‘.j:' JE Nzu Jf, while the constraint coefficients of yj are all nonnegative for
."' J € N2 and all nonpositive for j € Jf, we can set yj= 0 for j € N2 and y)_ = 1
" W for j € Jg without affecting the value of zj .  This amounts to removing the
e 2 £

N variables y , j € N.u J(', from <IP)£’ and adding Z(a. :J € J{) to the
) i 2 0 ij 0

A L

right-hand side of the i-th constraint for i € M. Now for M(Jo",

(@r

5{5 Z(ajj P JE Nzu Jf) = 0 by definition, and so the right hand side coefficien'
s

-'b- isZ(a  : jJeN)~-1+a , as claimed for (SIP)t.

o ij 1 l_]‘c

J L]

: Further, these value assignments for yj, J € N2 U Jﬁ make the constraints
o

A , ie M\ M(Jf) redundant, since

. R
o Za vy, t JENUN) - ILa .y @ jed)
4:!' . . . ‘C
® = E(a”y]_ R > Nl) E(a”yj g €eJN)
=

. S Z/a,  : jeN)

,,-;v ij 1 ¢

-" . . _

NE < ')_“.(aij . B Nlu Nzu Jo) 1+ aiit
." where the last inequality follows from the fact that

:':.

o5

e

b

A

ol

® 11

O

*A

X
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r 4
ai
£

,l {l “' {l

. £
Z(aij T j € Nzu JO) 21

for 1 € M \ M(Jf) (by definition of M(Ji)).

r RV L)
Ay A&

220,

Next, the maximum amount by which Z(yj 1 J € Nl) could possibly be
L £

increased by setting yj = 1 for some or all j € J1 U Jz is 2 {(from 1 to 3);

'l':

o o P o,
P
S

" a
P4
7

hence we can set yj = 0 for all j ¢ Jf (as Bj -2}, and we can impose the

-
y

W,

constraint Z(yj : J € Jf) <1 (as Bj = -1 for all j € Jf) without affecting

ol
A

G
5%

3

the value of z .||
e

NN

Proof of Theorem 3.1. From Lemma 3.2, Theorem 3.1 is true if and only if

( « =-B ,4&=1, ..., q, where the a  are defined by (3.1) and the B by
o g g e '

K (STP) . '

D Note that the last inequality of (SIP)t can be written as E(yj 1 J € J1)=

e
%
Q

" &

0 orl. Thus z = max{z |, z? } where z? , z? denote the maximum in (SIP)€

1g i 1g 1e 1e
when E(yj S I J1) = 0 and 1, respectively.

>

__.V
A

z
lj

X

o b

Consider the conditions of Theorem 3.1 defining @ . 1If (cl}) holds, then
L
for every i € M(Jf) the right hand side of the corresponding constraint of

= 3 (and E(yj i JE Jf) =

i~y

v

SyNAS

. L _ 0

(SIP)z is equal to Z(aj-i : J € Nl), hence zJC = 23{

0). Conversely, if zj = 3, i.e., yj =1 Vj € Nl, the right hand side of
£

every inequality i € M(Jf) must be equal to Z(ajj 1) € Nl), hence (cl) must

/'(.O

v .

Aty

x

,l’

A

*y

v’

hold. Thus zj = 3 if and only if (cl) holds.
2
If (cl) does not hold, then zj € 2. Now suppose (c2) holds, i.e. there
L
exists k € N, u Jt such that a, + a 2 1 for all i € M(JC). If k € N_,
1 1 ik iig o} 1

then y defined by ;j =1, j € N\{k}, ;j = 0 otherwise is feasible in (SIP),,

LA

3 9. ';'.n
&S

Y
Gy

since

LN
(NS \,l: .
Py
v S

-
Fal'd
[

- . N - . L. _ o ’
L aljyj . Nl) Z(aijyj S Jl) = Z(aij 1 j€ Nl\tk})

™

:::, < ):.(aij I N1) -1+ aijt,
1, j e Nu {k},

H

oy If, on the other hand, k ¢ Jf, then y defined by yj

~§ ;J = 0 otherwise, is feasible since

ey
\.‘

3¢ () ",
a':fl itehi it

- U
u'l,'-'tin‘h'r




m’“m'“j

e
G: Z"a;"jE"J‘—E(a;'jEJz):Z(a :jJeNY - a
"‘ ‘iiTy 7 ijvj " 1 iy o 1’ ik
Vet ( . -
R < E\aij T J € Nl) 1+ a“{
(l' Further, for both ;' and ¥y, z. = 2.
o:, - Jt
: ' Finally, assume that neither (cl) nor (c2) holds. Then for each
LA
-::'I ke N u J£ there exists some i € M(Jc) such that a = a = 0. We consider
,_.! , 1 1 Q ik x_)c
' 4 two cases.
K. ,}«:
*"‘“ Case 1: Z‘(yj : JE Jf) = 0. Since zj < 2, at most two of the variables
Ol £
iy yj, J € Nl, can be equal to 1 in any solution. let y, 0, and let
‘ ] i(k) € M(JC) be such that a_ .= 0. then
ul ¢t} l(k)_)('
W
LA o3 I : flely —
f:’ z(ai(k)jyj b3 oe NA{k}) s Z(a“k” Joe Nk} - 1,
Y
:-':: i.e. at most one of the two variables yj, J € N‘l_ {k}, can be equal to 1.
.‘ Hence z. = 1.
e 12 2 2
o Case 2: I(y, : jeJ) =1. Lety =1,y =0, eI '\ {k, and
-':‘_‘.: let i(k) € M(Jt) be such that a = a, - = 0. Then
-~ 0 i(k)k l(k)]c
'-( Z(a ¥y : jeN) - Ea v i jedY - xa Yy t jEN)-a
> (k)i -’ 1 ()it o 1 i(k)i”§ 1 i(K)k
P
A7 . B
::'_'.: = z(ai(k)j J € Nl) 1
:I. or, since a = g,
:) i{k)k
:: Bla Yy P I END S B, JeN) -1,
I‘
~$‘- which means that at most two of the variables yj, J € Nl, can be equal to 1 in
.
§
sy : any solution to (SIP)(‘. This, together with y, = 1, implies zj = 1.
® Z
it We have shown that 8 =1-2 = -2 if (cl) holds, 8 = -1 if not (cl)
o ig i j
b . L £
-ﬁ.{': but (c2) holds, and ﬁj = 0 if neither (cl) nor (c2) is satisfied. Thus Bj =
AL £ Z
S
L - ,4&=1, ..., q for . defined by (3.1).}]
°® 1z a
:v: Theorem 3.1 gives a sufficient condition for an inequality (3.2) to
.'ﬁ: define a facet of P _(A). The condition, however, is not necessary. This is
i) 1
s illustrated by the following.
()
‘-j Example 3.2. Let A be the matrix
ay
eV
® 13
ST oy

W
ol

-

MOV RTINS et % A 5 3N ) , 3 QOO RO 5 AT ERT T OO0
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' and let N1 = {1,2,3}, N2 = {4,5,8}. Then X, v x4 X 2 2 defines a minimal

e
j:" inequality for PI(A“""'G)), but not a facet, since A“""’G) contains
:-, (Ia, E) as a submatrix. However, for the ordering (7, 8, 9) of N3 in the
:"L lifting procedure, we obtain the inequality X, + X, + Xy + X, + Xg + Xg 2 2,
%:.-: which defines a facet of PI(A).H
-_‘: A given inequality (2.1) can give rise via lifting to many different
.zf inequalities (3.2), depending on the sequence in which the coefficients <xj are
~* calculated. The earlier in the sequence a given coefficient is calculated,
;: the lower its value (in the weak sense). To be precise, the coefficients cxj
‘_. have the following property.

N* Corollary 3.5. Let {jl, cens jq } be an arbitrary ordering of Nj, and

"

»

-

for

rAars
>

(_k) be the value of &« in the ipequality (3.2) associated with

G

any £, let «

“ Jc JAC

~

".:: the ordering obtained from {jl, cens _jq } by moving jz to the kt'h position.
'.::

b Then

®

o afk)s «(_“”, k=1, ..., ¢ -1.

he e e (k)
i Proof. Consider the problem (SIP)‘& used to calculate the value of otj
K, L
X3

. and (x(,k”) and denote by sz) and z(,k”) the corresponding values of z . Then
[ ] J(' "‘C J‘C 1

s

':-‘ clearly the solution that yields the value H»f z;k) is also feasible to the
", £

v,

'_',." problem whose optimum is z(_“”; hence z(,k) < z(.““. i.e., u(,“ s a<k+1).||
M Jc J£ Jc ] ]

L ] . . .

v Since the coefficients of (3.2) vary in size between 0 and 2, the
L

“w

;-'j question arises as to whether the range of variation of a given coefficient «
“

5
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K
l

as a result of changes in its positicn in the sequence « , ..., « can be
b 1
1 5]

narrowed down to less than 2, as in the case of a knapsack polytope, where
this range 1s 1. The answer to this question is negative, as shown by the
following example.

Example 3.4. Consider the matrix

11010
01101
A=110101
11001
0600110

with Nl = {1,2,3}, N2 = @. The lifting procedure yields the two inequalities
X +x_+x_+0.x +2x_ 22
1 2 3 4 s
X +x_+x_+2x +0.x =22
1 2 3 q 5
for the sequences 4, 5 and 5, 4, respectively, and each of the variables X,
X have coefficients that differ by 2 in the two inequalities.“
For any subset S c M, PI(A) c PI(AS) and thus any inequality wvalid for

PI(AS) is also valid for PI(A). Therefore we have

Corollary 3.6. Let S be a proper subset of M, |S’| 2 3, and let

(3.9) Z(xj S N1) + Z(ajxj : JE Na) 22
be a lifted inequality obtained by applying Theorem 3.1 with M(J'o(') replaced

by

L. _ .. _ : 2
SCI7) := LJu:s|aij_o, Vie N, u J 7}

in the conditions (cl) and (c2) defining uj . Then (3.9) is a valid
L
1nequality for P1 (A4).
We will use the device of working with a subset of the rows of A to prove
the key result of Section 4. Here we illustrate one of the situations when

this device is useful.

Example 3.3. Consider the matrix

15
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.
oy
.:. 0001111
" A - 0111011
nThet - 1011010
Y] 1101101
.
. y let N = {1,2,3}, N. = 8. The inequality
o 1 2
[
JA:: x1+x2+x322
¢
‘ is wvalid but not minimal for PI(ANIUNZ), since PI(AN1UN2) = @ and any
" inequality is valid for an empty polytope. However, this is a minimal valid
[N
V. inequality for PI(A:1UNZ) with S := {2,3,4}, and when lifted via the procedure
LM n
‘ a
e’ of Theorem 3.1 (with A replaced by AS) it yields the inequality
::'“: X+ X_ +x_+2x +x +x_ +x_ 22,
,,.:_ 1 2 3 4 5 6 7
e ¥ . . . . . .
i:". which is minimal and facet defining for both Px(As) and PI(A).H
1y
." Naturally, when PI(Aulunz) # @, the inequality (3.2) obtained by applying
i_’:f:‘ the lifting procedure to A dominates any inequality obtained by applying the
o
- same procedure to AS for some S c M.
-
" Note that although the lifting procedure in principle involves solving an
::-::; integer program to calculate the value of each coefficient, Theorem 1 gives a
"'\_‘
j::' closed form expression for the values of the coefficients,which makes it
b
possible to calculate them efficiently. The work involved in calculating all
‘_f,:j the coefficients of an inequality (3.2) is O(mnz). where m = |M| and n = |N|
”
".p.
:.f: Next we identify an important subclass of the class (3.2) of inequalities,
'h"’
."' whose members are independent of the sequence in which their coefficients are
o) calculated, and can be obtained by work of O(mn).
g
3
:’:_.‘( For any triplet N1 < N and any N2 € N\ Nl, define, as before, M0 1=
1
%]

fieM] a, =0, Vje N} and N_ := N\ (N u N). Wewill say that N, is

o™
X @
-

N1~max1'mal if for each j ¢ Na’ there exists k(j) € N1 such that for all

—?.
-
'~

:"E:.' i€ Mo’ aij = 0 implies a“‘(j) = 1. N;maximal sets N2 with respect to a
G
" given triplet N1 need not be unique.

SR
SR

Corollary 3.7. Let Nk, k =1, 2, 3, be as in Theorem 3.1, let (2.1) be a

-
-
-

1'."'.
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..
:‘;:- minimal valid inequality for Pl (AN1UN2), and let Nz be }Vl -maximal. Then for
EC:E any ordering of Na‘ the coefficients defined by (3.1) are given by

i . |

?:: (3.10) °‘J : {2 if a. ‘= 1 for all 1 ¢ M0

LhEN 1 otherwise.

E:j::: Proof: For j € N3 such that a” = 1 for all i € Mo’ condition (cl) of
_a' Theorem 3.1 holds and thus 0!J = 2. For all other j € Na’ condition (c2) holds
; “‘:% since Nz is Nl—maximal, hence aj = 1”

Note that not only is the definition (3.10) of the coefficients ozj
_ simpler than (3.1), but calculating these coefficients also involves less
;g: work: given some triplet N1 < N, finding a set Nz S N\ Nl, such that Nz is
::.-:S N;maximal and calculating all the coefficients <xj defined by (3.10) require,
:‘?: O0(mn) work.

ﬁ;‘ Besides requiring that N2 be Nl—maximal, Corollary 3.7 also assumes that
'.:::. (2.1} is a minimal valid inequality for PI(Auiunz). This imposes further
("_‘l' conditions on Nl and Nz’ without which the lifting procedure may break down;
Slg namely, that the submatrix A:1 (whose definition depends on Nz via Mo) have no
?{l ‘ zero rows and no pair of uneq(;al rows with a single 1 in each. An Nl—maximal
‘ set N2 that satisfies these conditions will be called admissible. If, in
b{‘ addition, (2.1) is to cut off some vertex of P(A), then A:l must contain a Cg.
% °

oot The following procedure identifies an admissible Nl—maximal set N2 for a
” given triplet N1 that contains C§ as a submatrix. We assume that A has at
00 least two 1’s in every row.

..& Step O. Set N2 = B, N3 = N\ Nl. Choose any Jy € NI, set
.cg M, = {ieM ] B(a, : JeN) 2 2 or a”* =1}, M, :=M\ M, and go to 1.

j'. Step 1. If N3 = @, stop.

;. If N3 # @ but l‘/l1 = @, choose j & Na’ set N3 1= N3 \ {j} and go to 2.

g if N3 # @ and M1 # @, choose j € N3 such that ajf = 1 for some i € Ml.
‘-): If no such j exists, stop; otherwise set N3 1= N3 \ {j}, and go to 2.

L] 17
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Step 2. If for each k € N  there exists i{k' € Mo such that a =

(kK
Ay T 0, set NZ 1= N2 u {J, Mo = MO Sl € MO l a, = 1}, and (1if
M ®8) M :=M1\{1’€M1|ai]=l’:. Go to 1.

When the procedure stops, M1 = @ and N2 is N1—maximal and admissible.
The procedure may stop with N2 = @, which 1is trivially Nl—maximal and

admissible but useless. In such a case, another choice of j* and/or of the

order in which the elements of N3 are considered is 1likely to vyield a
different set Nz'

Example 3.4. Let A be the matrix

011111000010001
101110100011000
110110010001100
1110100010001 10
111100000100011

For N1 = {1,2,3}, the (unique) Ni-maximal (and admissible) set NZ 1s
19,10,14}. Similarly, the Ni—maximal set N2 happens to be unique (and
admissible) for each of the (2] triplets of the set {1, ..., 5} (the index
set of the first 5 columns). Table 1 shows for each N1 the corresponding
Nl—maximal admissible set N2 and the coefficients defined by (3.10) for the
associated inequality (3.9) (which is also the unique inequality (3.2)

corresponding to the pair (Nl, Nz) ).”
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e
\”} Table 1
AN
A
R
Y v
( :
b, V1 N? .
; ’ J 1 2 3 4 5 6 7 8 91011 12 12 14 15
- 1, 2, 3 g, 10, 14 1112 21110 011 1 01
D 1, 2, 4 8, 10 1 121 21101 011111
,‘h 1, 2, 5 8, 9, 13 112 21110011 10 11
s 1, 3, 4 7, 10 1 211 21011011111
Ky 1, 3, 5 7, 9 1211210101111 11
.5 1, 4, 5 7, 8, 12 1221111011101 11
. 2, 3, 4 6, 10, 15 21 1120111011110
. 2, 3,5 6, 9 21 1 210110111111
, 2,4, 5 6, 8 21 21101 0 1 1 1 1111
:: 3, 4, 5 6, 7, 11 221110011101 111
o
o\
o,
v,
D
:\ 4. All the Facets with Coefficients in {0,1,2}
,’5
?: In this section we show that every inequality with coefficients in
,ﬁs {0,1,2} that is facet inducing for PI(A) can be obtained by the lifting

procedure of Theorem 3.1 from a minimal valid inequality to PI(A:1UN2), for

|

-
Z)

30200

some triplet N] < N and associated sets N2 < N, R € M. For this we need
some results of [1].

We have shown in [1] that all minimal inequalities of PI(A) with
coefficients equal to 0, 1 or 2 can be generated by the following procedure
applied to subsets S of M:

Procedure C

(1} Add the inequalities a,x *...+a x 2 1 for all i € S;

{i1) divide the resulting inequality by lSl - €, where 0.5 < € < 1; and

f£1i1) round up all coefficients to the nearest integer.

We denote by asx 2 2 the valid inequality so obtained and by € the

class of all such inequalities. Procedure C is a particular variant of

' L’.,,’g’v_,'n,’(’gfd L X P A A'_‘. H“}J ‘i ] }

Chvatal’s well known, more general procedure [3].

rd The coefficients of the inequality resulting from procedure C arc
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W\ 2 ifa =1, Vie§
N 1]
>~ a =<0 ifa =0, Vies§
h\ v, ] 1]
{ 1 otherwise.
"}_: We denote
< J oi={jeN|a« =ki, k=0,1,2
\‘:- k 1
v and
J
“q MI) = {ieM|a =0, Y€}
'
’.‘- For any submatrix A: of A, a pair j, k € H is called a Z-cover of A: if
0
aij + a 2 1 for all i € S. The Z-cover graph of A: has a vertex for every
f
A
'_:'_: J € H and an edge for every 2-cover of A:.
‘ol al
v
::E The following result is from [1] (Corollary 2.5 and part of Theorem 2.6).
U
g_ Lemma 4. 1. The 1inequality (xsx 2 2 is minimal I1f and only 1f the
\D‘J J
": Z~cover graph of A h has no isolated vertices. If cxsx 2 2 defines a
~ M3 )
3, .-‘
N J
y:-f facet of 1""I (A}, then every component of the 2-cover graph of A":J N has an
¢ °
o odd cycle.

! The following is a key result of this section.
)
e Theorem 4.2. Let ax 2 2 be a facet defining inequality for PI (A}, with

IM 2 4. Then there exists a triplet IV1 c J‘l such that

« 8

o :

(2.1) T(x : JeEN)z 2
Y i 1
M . . ., . . A,NUJ . .
W is a minimal valid inequality for P[( 1°°0). Further, the inequality ax 2
o
::.' 2 can be obtained from (2.1) by the lifting procedure of Theorem 3.1 if and
) J
::‘.0: only 1f the 2-cover graph of AH:J ) is connected.
LN 0
.\- Proof. Since ax 2 2 is facet defining, it belongs to the class C. Hence
o
s x =2 ifa =1 for all 1 e M(J ), « =0 if a = 0 for all i € M{(J_ ), and
) 1 1] o b ij (o}
‘f. aj = 1 otherwise.
)
Let G(Jl) denote the 2-cover grarh of A;}J y: Since ax 2 2 is facet
9 o
;: defining, G(J1) has a path with at least three vertices (Lemma 4.1). Choosing
D :
:t for N1 any three consecutive vertices of such a path guarantees that the

o
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2~cover graph of A:}, ) has no isolated vertex:; hence that (2.1) is a minimal

N uJ
0

valid inequality for PI(A‘l ).

Now let jl, c ey jq be any ordering of N3 = N\ (N1 U Jo\ {where q =
|N3|) such that for k € {1, ..., q}, every jk € J1 is adjacent in G(Jl) to
some J € N1 u {Jl, ceey jk_l}. Such an ordering exists if and only if G(J1>

is connected.

Suppose this is the case. For jk € JZ, since a = = 1 for all i € M(Jo‘,
i

condition (c2) of Theorem 3.1 holds and thus Jk gets a coefficient of 2, which

is the wvalue of aj . For jk € Jl, since there exists j* € N1 U
K

s . . .

{J,s - Jk-l} such that aij* + aijk 2 1 for all 1 € M(JO), Jy gets a

coefficient of 1, which again is the value of «

i
K
Suppose now that G(Jl) is not connected. Since N1 is chosen from a path,

hence from one component, there exists a component of G(Jl) whose vertices do
not contain any element of N1 and are not adjacent in G(Jl) to any element of
Nl. Let J11 be the vertex set of this component. Then for any ordering
of N3, the first element from Jll, say jk, will not form a 2-cover with any of
the elements in Nl U 1d.s vens jk_l} and will therefore be assigned a

1

coefficient of O, which is different from the value of aj . This implies that
K
every inequality lifted from (2.1) by the procedure of Theorem 3.1 has a

coefficient different from uj for at least one j € J1 c J i.e. ax 2z 2

1 1’

cannot be obtained in this fashion.||
Theorem 4.2 should not surprise anyone familiar with lifting theory.
Although if (2.1} is a minimal valid inequality for PX(AN1UJO), then every
minimal valid inequality for PI(A) which has coefficients identical to those
of (2.1) for j € N1 U Jo can be obtained from (2.1) by lifting (2, 7], the
kind of lifting required may not be sequential, but simultaneous. What is

specific to the class of inequalities discussed in this paper, however, is

that in their case sequential lifting is sufficient for generating all of
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them, provided the procedure is extended to encompass restrictions of the row

set M of A to some subset of M, in the vein of Corollary 3.6. To show now
this can be done, we need another result of [1].

Given an inequality asx 2 2 in class C, a subset T c M(Jo) is called
C-equivalent to &, if o = as, i.e. T gives rise to the szme inequality as S.
T is a wminimal C-equivalent subset of M(Jo) if no proper subset of T 1is
C-equivalent to M(Jo).

For k 2 2, we denote by C:-1 the complement of a permutation matrix, 1i.e.
a square (-1 matrix of order k, with exactly one 0 in every row and column.

Lemma 4.3. (Theorem 3.1 of [l]) For every minimal C-equivalent subset T
ofAM(Jb), Arjl contains a submatrix Ct_l

let ax 2 2 be a minimal valid inequality for PI(A), and let T be a
minimal C-equivalent subset of M(Jo). Let K be the column index set of a
ct-1

t
contained in Ail, and define L := K u Jo’ R:=Tu M | M(JO)).

It is easy to see that any triplet N‘l < K gives rise to a submatrix A:1
that has at least two 1l’s in every row and contains a Cz. To identify the
latter, just take the three rows which contain a 0. An important property of
A;l is the following.

Lemma 4.4. The Z2-cover graph of'Ai1 is connected.

Proof. Every pair of columns of C:_1 is a 2-cover of A:l, hence the
column set K of C:'l induces a clique in the 2-cover graph G(Jl) of A;l. On
*he other hand, for every column ) € J1 \ K of A;l, there exists some column
k(j) € K whose unique 0 occurs in a row i with aij = 1, i.e. such that j and
k{j) form a 2-cover A;I.H

We are now ready to state the main result of this section.

Thecrem 4.5. Let |N| 2 4 and let ax 2 2 be a mipimal valid Iinequality

for Pr (A). Then there exists a triplet /t’1 c N and a subset T < M such that
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‘S: 1s a minimal valid 1nequality for Fz(Agluuz), where A& o= Jb and § - Tu
L)

N
( (M \1V(J6)‘. Further, «x 2 2 can be obtained from (2.1) by the lifting
L

f procedure of Theorem 3.1, with MYJbC) replaced by

::: S('JC)'"{'ES[a -0, Vie N u g

I o 4 T 12 ig oo 2 o

t in the conditions (cl} and (cZ2) defining the coefficients aj .

e £
;¥: Proof. Since ax 2 2 is minimal, it belongs to the class C. From
:; Lemmas 4.3 and 4.4, there exists a minimal C-equivalent subset T of M(J03

such that the 2Z-cover graph of Ail is connected. Therefore there exists a

P

&.5”

o triplet N1C Jisuch that (2.1) is a minimal valid inequality for Pl(A21UN2}.
i: where N2 t= Jo and § := T u (M \ M(Jo)). Since the 2-cover graph of A;l is
SI connected, from Theorem 4.2 ax 2 2 can be obtained by applying to (2.1) the
-
"
-~
o lifting procedure of Theorem 3.1, with M(@) (= Mo) replaced by $S(8) = T and,
":
(2 more generally, M(Jc) replaced by S(Jé) c={iesSfa  =0,VjieN u J£}.H
(.~ ) 0 ij] 2 0
AR
( Example 4.1. Consider the matrix
- (110001011 )
k- 011011010
;:- 101010110
\ 010010101
; A= 101001101
j 010001111
Ny 101011011
7 010010110
Y 101101001
-~ L010100100 |
N | .
o and the inequality
o
:f {4.13 X+ x_ +x_+x +x +x_ +x_ +x 22
< 1 2 3 5 6 7 8 9
@ \ ,
E We have JO = {4}, J2 = @, J1 = {1,2,3,5,6,7,8,9}, and M(Jo) = {1, ..., B}, We
‘j choose N1 = 11,2,3}; then X, + x, + X 2 2 is a minimal valid inequality for
-
v Pl(AN1UJo) = P[(A(l""'Q}), which is also facet defining. Since the 2-cover
@
‘:: graph G(Jl) of A;;] ) shown in Figure 4.1, is disconnected, none of the
:: °
N\
N

[ 1)
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"', lifted incqualities is 4.1}, The coefficients of these inequalities are
o\ _ -

N shown in Table 2.

‘\'.

t

o

—

PPN
If..
(=)

w L‘.L LY

o Y = o
~

3 9
b 8
o
\-‘
1O
ot .
.“ Figure 4.1
:"'.
L
%
~ Table 2
RS —_—
- Coefficients of lifted inequalities
e i .
T No 1 2 3 45 6 7 8 9 Ordering of N,
g
- 1 111 0 0 2 11 2 5 6, 7, 8, 9
2 111 0 2 0 2 11 6, 5, 7, 8, 9
3 1 11 061 2 0 2 1 7, 5, 6, 8, 9
LS. 4 1110 1 1 2 0 2 8, 5, 6, 7, 9
. 5 1110 2 1 1 2 0 s, 5, 6, 7, B
[ N:
oy
.' The orderings of N3 considered are those in which the elements take turns to
=y
‘. be chosen first, while the remaining elements keep their natural order. No
f'.: other orderings yield different inequalities. Each of the 5 inequalities is
"""
.~
° facet defining for Px(A)’ as is inequality (4.1).
e
>
f_‘« Now consider the row set T = {3,5,6,7}, which contains a Cj with columns
v
Y
.\:;' indexed by K = {3,6,7,8}. The 2-cover graph of A:_l is shown in Figure 2.
:.}
® The inequality X, +x2+x32 2 1is mwinimal for Pl(A;1UN2), where
l¢-

s = {3,5,6,7,9,10}. Applying the 1lifting procedure with M(@) replaced by

5
A

> w
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" T = {3,6,7,8}, and any ordering of N3 in which 5 does not precede all of 6, 7,

KAh 8, 9, yields the inequality (4.1).||

° Figure 4.2

“

o
v

a_a

Note that if for the inequality ax 2 2 there exists a triplet Nl C J1

7.

N
n'.'
o
o

v,
S

such that Jo is Nl—-maximal and (2.1) is a minimal wvalid inequality for

PI(AN1UJ0), then in the 2-cover graph of A;:zj , every vertex of J1 \ N is
o}

—~

1

L

s

connected to some vertex of N1, and ax 2 2 can be obtained by the simplified

N
A
SIS

lifting procedure of Corollary 3.7.
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